We are thrilled to see how technology makes it so much easier for almost everything around us to become more sophisticated and, at the same time, more straightforward. It thrills us, even more, when tools designed to make our lives easier are made available to us. Achieving this without triggering costs is certainly an advantage, but if we can reduce them too, it is doubly good.
This is precisely what TVU Networks’ RPS offers us today. Simplifying a lot, it is a device that allows producing a live broadcast from a remote installation only by moving the cameras. Although, this is not new. So, what is? The ability to do so through a single “home” fibre optic line. Like with the home one, there is no need for a dedicated line. Having said this, these priorities are very much kept: total stability of the system, synchronisation and optimum coding of signals, in addition to minimum delay.
The entire system only requires two devices: an encoder for the remote location, and a decoder for the local station. These are simple standard two- height rack size units. Easy to transport, more so considering that we only have to carry one device. HD-SDI, Ethernet and DVI connections are available on the rear panel. Easy and quick to install. The management of quality, compression, etc. of audio/video signals is done through a computer connected to the same network with no special requirements. Easy and quick to configure.
As for our tests, we were fortunate enough to be at the broadcast of a sporting event and get first-hand impressions of real-life usage: a local league football match broadcast live on local television.
On the field, there were three cameras with two embedded audio signals each, connected to TVU Networks’ RPS (Remote Production System) encoder. This, in turn, was connected to a fibre optic router identical to the common-or-garden ones we see in anyone’s home, with the same standard 300Mb home connection that most operators offer throughout the country. In the television station, the RPS decoder was connected to one of its 300 Mb data lines on the one hand, and to the SDI signal array on the other.